Abstract

Opinion

Expanding human-based predictive models capabilities using organs-on-chip: A standardized framework to transfer and co-culture human iPSCs into microfluidic devices

Jessica Rontard, Benoît GC Maisonneuve* and Thibault Honegger

Published: 13 April, 2023 | Volume 7 - Issue 1 | Pages: 017-021

There is an urgent need for predictive preclinical models to enhance the success rate of clinical trial outcomes. One of the main reasons for drug attrition is the lack of translational models, methods using human cells are particularly in the spotlight of regulatory bodies as they offer an alternative to in vivo studies and have the potential to improve the translational of preclinical trials. Organs-on-Chips (OoCs) are sensible candidates to reduce the cost and the ethical burden of animal models while accelerating and de-risking drug development. The innovation of such systems is based on both the increased relevance of the cells used and the ability to build precise, yet physiologically relevant, complex architectures. 
The use of microfluidic technologies with human induced pluripotent stem cells (hiPSCs) opens new routes to create relevant in vitro approaches as they will soon be able to reproduce clinical characteristics of donors or specific populations. 
The adoption of OoC models by pharmaceutical industries, and in fine by regulatory agencies, still requires: (i) establishing standardized, reproducible, robust, and replicable cell culture protocols with specific validation and characterization criteria, (ii) evidence that the technology predicts human responses, thus allowing to contribute efficiently and reliably to clinical trials success of novel therapeutics, and (iii) evidence that the models refine and reduce animal testing without compromising with the quality and the pertinence of the data generated.

Read Full Article HTML DOI: 10.29328/journal.apps.1001039 Cite this Article Read Full Article PDF

Keywords:

New approach methodologies (NAM); Organ-on-chip (OoC); Human induced pluripotent stem cells (hiPSCs); Standardization; Microfluidic technology; Predictive human cell-based in vitro models

References

  1. Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022 Aug;23(8):467-491. doi: 10.1038/s41576-022-00466-9. Epub 2022 Mar 25. PMID: 35338360; PMCID: PMC8951665.
  2. Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Translational Medicine Communications 2019 4:1. 2019 Nov 18; 4(1):1–19. https://transmedcomms.biomedcentral.com/articles/10.1186/s41231-019-0050-7
  3. Ingber DE. Is it Time for Reviewer 3 to Request Human Organ Chip Experiments Instead of Animal Validation Studies? Adv Sci (Weinh). 2020 Oct 12;7(22):2002030. doi: 10.1002/advs.202002030. PMID: 33240763; PMCID: PMC7675190.
  4. Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In VitroCompartmentalized Microfluidic Devices. Front Bioeng Biotechnol. 2022 Jun 24;10:919646. doi: 10.3389/fbioe.2022.919646. PMID: 35813998; PMCID: PMC9263267.
  5. Bein A, Shin W, Jalili-Firoozinezhad S, Park MH, Sontheimer-Phelps A, Tovaglieri A, Chalkiadaki A, Kim HJ, Ingber DE. Microfluidic Organ-on-a-Chip Models of Human Intestine. Cell Mol Gastroenterol Hepatol. 2018 Apr 24;5(4):659-668. doi: 10.1016/j.jcmgh.2017.12.010. PMID: 29713674; PMCID: PMC5924739.
  6. Maoz BM, Herland A, FitzGerald EA, Grevesse T, Vidoudez C, Pacheco AR, Sheehy SP, Park TE, Dauth S, Mannix R, Budnik N, Shores K, Cho A, Nawroth JC, Segrè D, Budnik B, Ingber DE, Parker KK. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018 Oct;36(9):865-874. doi: 10.1038/nbt.4226. Epub 2018 Aug 20. PMID: 30125269; PMCID: PMC9254231.
  7. Brown JA, Pensabene V, Markov DA, Allwardt V, Neely MD, Shi M, Britt CM, Hoilett OS, Yang Q, Brewer BM, Samson PC, McCawley LJ, May JM, Webb DJ, Li D, Bowman AB, Reiserer RS, Wikswo JP. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics. 2015 Oct 26;9(5):054124. doi: 10.1063/1.4934713. PMID: 26576206; PMCID: PMC4627929.
  8. Ahn J, Yoon MJ, Hong SH, Cha H, Lee D, Koo HS, Ko JE, Lee J, Oh S, Jeon NL, Kang YJ. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 2021 Sep 18;36(10):2720-2731. doi: 10.1093/humrep/deab186. PMID: 34363466; PMCID: PMC8450871.
  9. Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021 Aug 5;12(1):4730. doi: 10.1038/s41467-021-24775-5. PMID: 34354063; PMCID: PMC8342542.
  10. Castiglione H, Vigneron PA, Baquerre C, Yates F, Rontard J, Honegger T. Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications. Pharmaceutics. 2022 Oct 26;14(11):2301. doi: 10.3390/pharmaceutics14112301. PMID: 36365119; PMCID: PMC9699341.
  11. Tovar-Lopez F, Thurgood P, Gilliam C, Nguyen N, Pirogova E, Khoshmanesh K, Baratchi S. A Microfluidic System for Studying the Effects of Disturbed Flow on Endothelial Cells. Front Bioeng Biotechnol. 2019 Apr 17;7:81. doi: 10.3389/fbioe.2019.00081. PMID: 31111027; PMCID: PMC6499196.
  12. Li Jeon N, Baskaran H, Dertinger SK, Whitesides GM, Van de Water L, Toner M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol. 2002 Aug;20(8):826-30. doi: 10.1038/nbt712. Epub 2002 Jul 1. PMID: 12091913.
  13. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip. 2005 Apr;5(4):401-6. doi: 10.1039/b417651k. Epub 2005 Mar 9. PMID: 15791337.
  14. Mastrangeli M, Millet S, Mummery C, Loskill P, Braeken D, Eberle W, Cipriano M, Fernandez L, Graef M, Gidrol X, Picollet-D'Hahan N, Van Meer B, Ochoa I, Schutte M, Van den Eijnden-van Raaij J. Building blocks for a European Organ-on-Chip roadmap. ALTEX. 2019;36(3):481-492. doi: 10.14573/altex.1905221. PMID: 31329263.
  15. Busek M, Aizenshtadt A, Amirola-Martinez M, Delon L, Krauss S. Academic User View: Organ-on-a-Chip Technology. Biosensors (Basel). 2022 Feb 16;12(2):126. doi: 10.3390/bios12020126. PMID: 35200386; PMCID: PMC8869899.
  16. Caballero D, Reis RL, Kundu SC. Boosting the Clinical Translation of Organ-on-a-Chip Technology. Bioengineering (Basel). 2022 Oct 14;9(10):549. doi: 10.3390/bioengineering9100549. PMID: 36290517; PMCID: PMC9598310.
  17. Horvath P, Aulner N, Bickle M, Davies AM, Nery ED, Ebner D, Montoya MC, Östling P, Pietiäinen V, Price LS, Shorte SL, Turcatti G, von Schantz C, Carragher NO. Screening out irrelevant cell-based models of disease. Nat Rev Drug Discov. 2016 Nov;15(11):751-769. doi: 10.1038/nrd.2016.175. Epub 2016 Sep 12. PMID: 27616293.
  18. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861-72. doi: 10.1016/j.cell.2007.11.019. PMID: 18035408.
  19. Holloway PM, Willaime-Morawek S, Siow R, Barber M, Owens RM, Sharma AD, Rowan W, Hill E, Zagnoni M. Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci Res. 2021 May;99(5):1276-1307. doi: 10.1002/jnr.24794. Epub 2021 Feb 13. PMID: 33583054.
  20. Li L, Chao J, Shi Y. Modeling neurological diseases using iPSC-derived neural cells : iPSC modeling of neurological diseases. Cell Tissue Res. 2018 Jan;371(1):143-151. doi: 10.1007/s00441-017-2713-x. Epub 2017 Oct 28. PMID: 29079884; PMCID: PMC6029980.
  21. Penney J, Ralvenius WT, Tsai LH. Modeling Alzheimer's disease with iPSC-derived brain cells. Mol Psychiatry. 2020 Jan;25(1):148-167. doi: 10.1038/s41380-019-0468-3. Epub 2019 Aug 7. PMID: 31391546; PMCID: PMC6906186.
  22. Rivetti di Val Cervo P, Besusso D, Conforti P, Cattaneo E. hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat Rev Neurol. 2021 Jun;17(6):381-392. doi: 10.1038/s41582-021-00465-0. Epub 2021 Mar 3. PMID: 33658662; PMCID: PMC7928200.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?