Abstract

Research Article

Studies on the Influence of Charge Inducer and it’s Combination with P-gp Inhibitor to Improve the Oral Bioavailability of Nimodipine via Submicron Lipid Emulsions

Sara Fathima and Veerabrahma Kishan*

Published: 21 December, 2023 | Volume 7 - Issue 1 | Pages: 074-082

Background: Nimodipine (NM), is a dihydropyridine calcium channel blocker with poor oral bioavailability (BA) of about 13% due to first-pass metabolism and P-gp efflux. 
Objective: The present work aimed to study the influence of the charge inducer and its combination with P-gp inhibitor to improve the oral bioavailability of NM by developing a suitable delivery system of Submicron Lipid Emulsion (SME). 
Methods: Five SME formulations of NM were prepared by homogenization followed by ultrasonication. Prepared SMEs were characterized for particle size, PDI, Zeta Potential (ZP), Entrapment Efficiency (EE), and drug content. In vitro, release studies were performed in 0.1N HCl and pH 6.8 phosphate buffer by open tube method. The physical stability of all NM–SMEs was tested by the individual effects of centrifugation, dilution (desorption stress), and storage. Bioavailability studies were conducted on male Wistar rats after oral administration of NM suspension and F1 to F5 SME formulations. 
Results and conclusion: Five NM- SMEs were developed with a mean size ranging from 93 - 137 nm, Zeta potential of – 26 ± 1 mV (negatively charged), +45.8 to +46.3 mV (positively charged), and PDI of 0.15 - 0.25. The in vitro release studies showed that relatively more cumulative percentage release of NM – SMEs in 0.1N HCl than in pH phosphate buffer during 24 hours. The physical stability of NM–SMEs indicated that they were stable to the effects of centrifugation, dilution, and storage. Pharmacokinetic (PK) studies showed that the oral bioavailability of NM in F4 SME was significantly higher than that of all other formulations. Taken together, the results indicated the development of a stable lipid-based carrier, F4 SME to improve the oral bioavailability of this drug by minimizing first-pass metabolism due to lymphatic transport, reducing the efflux by P-gp inhibition, and further, by increased uptake of the positively charged F4 SME globules by enterocytes. Future: The research study findings increase the possibility of developing NM F4 SME by the pharmaceutical industry for the patient’s benefit.

Read Full Article HTML DOI: 10.29328/journal.apps.1001046 Cite this Article Read Full Article PDF

Keywords:

Nimodipine; Submicron emulsion; Oral bioavailability; Pharmacokinetic; P-gp inhibitor

References

  1. Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev. 2008 Mar 17;60(6):673-91. doi: 10.1016/j.addr.2007.10.014. Epub 2007 Nov 7. PMID: 18155801.
  2. Chakraborty S, Shukla D, Mishra B, Singh S. Lipid--an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009 Sep;73(1):1-15. doi: 10.1016/j.ejpb.2009.06.001. Epub 2009 Jun 6. PMID: 19505572.
  3. Lundberg BB, Mortimer BC, Redgrave TG, Submicron lipid emulsion containing amphipathic poly ethylene glycol for use as drug carriers with prolonged circulation time. Int. J. Pharm. 1996; 134(1-2):119-127.
  4. Madishetty S, Syed MA, Prabhakar K, Kishan V. Cationic Diclofenac Lipid Nanoemulsion for Improved Oral Bioavailability. Int. J. Pharm.Sci and Nanotechnology. 2015; 8(2):2874- 2880.
  5. Prabhakar K, Afzal SM, Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain, Acta Pharmaceutica Sinica B. 2013; 3(5):345- 353.
  6. Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res. 2003 Sep;26(9):768-72. doi: 10.1007/BF02976689. PMID: 14560928.
  7. Sun Y, Rui Y, Wenliang Z, Tang X. Nimodipine semi-solid capsules containing solid dispersion for improving dissolution. Int J Pharm. 2008 Jul 9;359(1-2):144-9. doi: 10.1016/j.ijpharm.2008.03.040. Epub 2008 Apr 7. PMID: 18499371.
  8. Kale AA, Patravale VB. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine. AAPS PharmSciTech. 2008;9(1):191-6. doi: 10.1208/s12249-008-9037-9. Epub 2008 Feb 5. PMID: 18446481; PMCID: PMC2976914.
  9. Chalikwar SS, Belgamwar VS, Talele VR, Surana SJ, Patil MU. Formulation and evaluation of Nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surf B Biointerfaces. 2012 Sep 1;97:109-16. doi: 10.1016/j.colsurfb.2012.04.027. Epub 2012 Apr 25. PMID: 22609590.
  10. Sun C, Wang J, Liu J, Qiu L, Zhang W, Zhang L. Liquid proliposomes of nimodipine drug delivery system: preparation, characterization, and pharmacokinetics. AAPS PharmSciTech. 2013 Mar;14(1):332-8. doi: 10.1208/s12249-013-9924-6. Epub 2013 Jan 15. PMID: 23319300; PMCID: PMC3581684.
  11. Nguyen TT, Duong VA, Maeng HJ. Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics. 2021 Jul 20;13(7):1103. doi: 10.3390/pharmaceutics13071103. PMID: 34371794; PMCID: PMC8309061.
  12. Zhang Q, Jiang X, Jiang W, Lu W, Su L, Shi Z. Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm. 2004 May 4;275(1-2):85-96. doi: 10.1016/j.ijpharm.2004.01.039. PMID: 15081140.
  13. Yu J, He HB, Tang X. Formulation and evaluation of nimodipine-loaded lipid microspheres. J Pharm Pharmacol. 2006 Nov;58(11):1429-35. doi: 10.1211/jpp.58.11.0002. PMID: 17132204.
  14. Barmpalexis P, Kanaze FI, Georgarakis E. Developing and optimizing a validated isocratic reversed-phase high-performance liquid chromatography separation of nimodipine and impurities in tablets using experimental design methodology. J Pharm Biomed Anal. 2009 Jul 12;49(5):1192-202. doi: 10.1016/j.jpba.2009.03.003. Epub 2009 Mar 20. PMID: 19369025.
  15. Krishna G, Wood GC, Sheth BB. Improving emulsification efficacy of lecithin by formulation design. I: Effect of adding a secondary surfactant. PDA J Pharm Sci Technol. 1998 Nov-Dec;52(6):331-6. PMID: 10050132.
  16. Baranda AB, Etxebarria N, Jiménez RM, Alonso RM. Development of a liquid-liquid extraction procedure for five 1,4-dihydropyridines calcium channel antagonists from human plasma using experimental design. Talanta. 2005 Oct 31;67(5):933-41. doi: 10.1016/j.talanta.2005.04.028. Epub 2005 May 31. PMID: 18970261.
  17. Andrew JH, William NC. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv. Drug Deliv. Rev. 1997; 25(1):103-128.
  18. O'Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002 Jun;15(5):405-15. doi: 10.1016/s0928-0987(02)00051-9. PMID: 12036717.
  19. Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008 Mar 17;60(6):625-37. doi: 10.1016/j.addr.2007.10.010. Epub 2007 Nov 4. PMID: 18068260.
  20. Washington C. Stability of lipid emulsion for drug delivery. Adv. Drug Deliv. Rev. 1996; 20(2-3):131-145.
  21. Chidambaram N, Burgess DJ. A novel in vitro release method for submicron sized dispersed systems. AAPS PharmSci. 1999;1(3):E11. doi: 10.1208/ps010311. PMID: 11741207; PMCID: PMC2761125.
  22. Gribar JJ, Ramachandra M, Hrycyna CA, Dey S, Ambudkar SV. Functional characterization of glycosylation-deficient human P-glycoprotein using a vaccinia virus expression system. J Membr Biol. 2000 Feb 1;173(3):203-14. doi: 10.1007/s002320001020. PMID: 10667916.
  23. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011 Apr;16(7-8):354-60. doi: 10.1016/j.drudis.2010.02.009. Epub 2010 Mar 3. PMID: 20206289.
  24. Ishii F, Sasaki I, Ogata H. Effect of phospholipid emulsifiers on physicochemical properties of intravenous fat emulsions and/or drug carrier emulsions. J Pharm Pharmacol. 1990 Jul;42(7):513-5. doi: 10.1111/j.2042-7158.1990.tb06609.x. PMID: 1980297.
  25. Arimoto I, Handa T. Lipid emulsion: Formation, stability and metabolism, Encyclopedia of Surface and Colloid Sci. 1998;13(3):3087-3097.
  26. Yáñez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev. 2011 Sep 10;63(10-11):923-42. doi: 10.1016/j.addr.2011.05.019. Epub 2011 Jun 13. PMID: 21689702; PMCID: PMC7126116.
  27. Gutierrez JM, Gonzalez C, Maestro A, Sole I. Nano-emulsions : New applications and optimization of their preparation. Current opinion in Colloid and Interface Sci. 2008; 13:245-351.
  28. Demeule M, Régina A, Jodoin J, Laplante A, Dagenais C, Berthelet F, Moghrabi A, Béliveau R. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol. 2002 Jun;38(6):339-48. doi: 10.1016/s1537-1891(02)00201-x. PMID: 12529928.
  29. Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008 Mar 17;60(6):702-16. doi: 10.1016/j.addr.2007.09.007. Epub 2007 Nov 7. PMID: 18155316; PMCID: PMC7103284.
  30. Pathak R, Dash RP, Misra M, Nivsarkar M. Role of mucoadhesive polymers in enhancing delivery of nimodipine microemulsion to brain via intranasal route. Acta Pharm Sin B. 2014 Apr;4(2):151-60. doi: 10.1016/j.apsb.2014.02.002. Epub 2014 Apr 2. PMID: 26579378; PMCID: PMC4590727.
  31. Takamura A, Ishii F, Noro S, Tanifuji M, Nakajima S. Study of intravenous hyperalimentation: effect of selected amino acids on the stability of intravenous fat emulsions. J Pharm Sci. 1984 Jan;73(1):91-4. doi: 10.1002/jps.2600730124. PMID: 6694093.
  32. Varshika E, Prabhakar K, Kishan V. Preparation, characterization, and in vivo pharmacodynamic evaluation of parenteral diclofenac submicron lipid emulsions. PDA J Pharm Sci Technol. 2009 Sep-Oct;63(5):380-9. PMID: 20158044.
  33. Teng Z, Yu M, Ding Y, Zhang H, Shen Y, Jiang M, Liu P, Opoku-Damoah Y, Webster TJ, Zhou J. Preparation and characterization of nimodipine-loaded nanostructured lipid systems for enhanced solubility and bioavailability. Int J Nanomedicine. 2018 Dec 21;14:119-133. doi: 10.2147/IJN.S186899. PMID: 30613141; PMCID: PMC6306054.
  34. He Z, Zhong D, Chen X, Liu X, Tang X, Zhao L. Development of a dissolution medium for nimodipine tablets based on bioavailability evaluation. Eur J Pharm Sci. 2004 Mar;21(4):487-91. doi: 10.1016/j.ejps.2003.11.009. PMID: 14998579.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?